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Abstract.13

Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with homogenous disease patterns. Neuropathologi-
cal changes precede symptoms by up to two decades making neuroimaging biomarkers a prime candidate for early diagnosis,
prognosis, and patient stratification.
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Objective: The goal of the study was to discern intermediate AD stages and their precursors based on neuroanatomical
features for stratifying patients on their progression through different stages.
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Methods: Data include grey matter features from 14 brain regions extracted from longitudinal structural MRI and cognitive
data obtained from 1,017 healthy controls and AD patients of ADNI. AD progression was modeled with a Hidden Markov
Model, whose hidden states signify disease stages derived from the neuroanatomical data. To tie the progression in brain
atrophy to a behavioral marker, we analyzed the ADAS-cog sub-scores in the stages.
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Results: The optimal model consists of eight states with differentiable neuroanatomical features, forming two routes crossing
once at a very early point and merging at the final state. The cortical route is characterized by early and sustained atrophy
in cortical regions. The limbic route is characterized by early decrease in limbic regions. Cognitive differences between the
two routes are most noticeable in the memory domain with subjects from the limbic route experiencing stronger memory
impairments.23
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Conclusion: Our findings corroborate that more than one pattern of grey matter deterioration with several discernable stages
can be identified in the progression of AD. These neuroanatomical subtypes are behaviorally meaningful and provide a door
into early diagnosis of AD and prognosis of the disease’s progression.
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INTRODUCTION28

Alzheimer’s disease (AD) is a neurodegenerative29

disorder and the most common type of dementia [1].30

Symptoms of patients with AD range from cogni-31

tive decline like memory loss or language problems32

to psychiatric symptoms like depression or personal-33

ity changes [1]. However, neuropathological changes34

precede noticeable symptoms by up to two decades35

[2–5]. First affected by brain atrophy are the hip-36

pocampus (Hip) [6] and the entorhinal cortex (EC)37

[7], which is often not noticed due to missing symp-38

toms [8]. Therefore, the onset of the disease can be39

noticeable years before it is officially diagnosed. As40

the disease progresses, the atrophy spreads across the41

cerebral cortex, especially the medial temporal lobe42

[9].43

Most commonly, AD is diagnosed with the44

National Institute of Neurological and Communica-45

tive Disorders and Stroke (NINCDS)-Alzheimer’s46

Disease and Related Disorders Association47

(ADRDA) criteria [10]. Those suggest that patients48

with signs of dementia but without causes for other49

types of dementia are diagnosed with probable50

AD [11], which results in a heterogeneous disease51

pattern [12]. The heterogeneity adds to the challenge52

of early diagnosis and the development of effective53

treatments [13, 14].54

To deal with heterogeneity in the AD population,55

researchers stratify patients based on cognitive abili-56

ties and disabilities [15, 16] or brain atrophy [17, 18]57

for a snapshot in time. Furthermore, they describe58

different subtypes of AD regarding the progressive59

decline in cognitive functions [19–21] or changes in60

a variety of cognitive and physiological markers [22]61

based on differential disease progression over time.62

However, those approaches often rely on one point in63

time as a baseline, e.g., the time of official diagnosis64

or the start of the study. To bypass the necessity of65

defining a baseline time when modeling longitudinal66

data, stochastic models such as Hidden Markov Mod-67

els (HMMs) [23] can be utilized to model different68

disease states. Those states may reflect the develop-69

ment of a disease in terms of severity. Still, since 70

the states are not necessarily linearly ordered, these 71

models inherently allow parallel routes of disease 72

progression, which can be interpreted as several pro- 73

gression paths. Clinical data is not ideally suited for 74

HMMs due to often incomplete records and irregu- 75

lar visits [24, 25] and have therefore been used less 76

frequently in modeling AD. The few existing models 77

bypassed these issues by constraining the structure of 78

the model to six successive states [26] or discarding 79

records with missing values [27], which leads to fur- 80

ther reduction of often already small clinical data sets. 81

Two more current studies modeled the heterogeneity 82

in the progression of AD either using HMM based on 83

a mixed set of behavioral and neuroimaging markers 84

[13] or using another stochastic modeling approach 85

based on structural brain markes [28]. 86

The goal of the current study was to find interme- 87

diate disease stages of AD progression based on the 88

structure of selected brain regions typically involved 89

in the disease. With the anatomical data included, 90

we expected to capture the heterogeneity in the spa- 91

tial spread of brain atrophy. Differential decline in 92

some cortical and subcortical grey matter regions 93

is expected based on the heterogeneity of symp- 94

toms found in AD patients [29]. Subtyping patients 95

based on the neurodegenerative progress can help, 96

on the one hand, with the prognosis of symptoms and 97

progression, and on the other hand, in developing spe- 98

cialized treatments for the different subgroups [30]. 99

For a complete picture, we included subjects irrespec- 100

tive of their diagnosis (healthy controls (HC)/mild 101

cognitive impairment (MCI)/AD). Furthermore, no 102

constraints were imposed so the model could learn 103

its structure from the given data set. To tie the pro- 104

gression in brain atrophy to a rich behavioral set of 105

markers, we analyzed the subjects’ the Alzheimer’s 106

Disease Assessment Scale – cognitive (ADAS-cog) 107

11 [31] subscores in the different disease stages. 108

The potential differential behavioral of the subtypes 109

based on grey matter atrophy strengthens the rele- 110

vance of the subgroups and the heterogeneity found 111

in previous studies [13, 28]. Analysis of neurophysi- 112
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ological markers from cerebrospinal fluid (CSF) [32]113

and positron emission tomography (PET) [33] that114

have been discussed as biomarkers for AD diagno-115

sis round off the description of the progression of the116

subtypes.117

MATERIALS AND METHODS118

Participants and data119

Data120

Data used in the preparation of this arti-121

cle were obtained from the Alzheimer’s Dis-122

ease Neuroimaging Initiative (ADNI) database123

(https://adni.loni.usc.edu) in October 2018. ADNI124

was launched in 2003 as a public-private partnership125

led by Principal Investigator Michael W. Weiner, MD.126

The primary goal of ADNI has been to test whether127

serial magnetic resonance imaging (MRI), PET, other128

biological markers, and clinical and neuropsycho-129

logical assessment can be combined to measure the130

progression of MCI and early AD.131

Anatomical data132

Grey matter changes caused by AD can be detected133

by structural MRI (sMRI) [34]. In ADNI, two sagit-134

tal T1-weighted 3D magnetization-prepared rapid135

gradient-echo imaging (MP-RAGE) scans are avail-136

able for each subject. For ADNI-1, subjects were137

scanned with 1.5T MRI at each time point, whereas138

subjects enrolled in ADNI-GO and ADNI-2 were139

scanned at 3T.140

For the modeling procedure in this study, only141

markers from sMRI were chosen due to their high142

spatial resolution and diagnostic ability [35] with-143

out radiation exposure of the subjects. The used144

data was preprocessed and quality checked by the145

Mayo Clinic [36]. Preprocessing steps included cor-146

rection for non-linearity of gradients and intensity147

non-uniformity. Furthermore, cortical reconstruction148

was performed [37] with motion correction, removal149

of non-brain tissue, Talairach transformation, seg-150

mentation of grey matter and white matter, and151

intensity normalization using FreeSurfer [37] and152

a longitudinal image processing framework [38].153

The reconstruction concluded with cortical parcella-154

tion using the Desikan-Killiany atlas [39]. This atlas155

differentiates 34 cortical regions of interest (ROIs)156

in each hemisphere. Further, 40 subcortical regions157

were defined [40]. The volume was calculated for158

each cortical and subcortical region. Additionally, the159

surface area, cortical thickness (CT) average, and CT160

standard deviation were computed for the 68 cortical 161

regions. Finally, visual quality control was performed 162

by summarizing the regions into eight larger areas 163

and ranking them based on their quality as ‘pass’ or 164

‘fail’. The overall quality is determined by the quality 165

of the regions and can have values like ‘pass’, ‘fail’, 166

‘partial’, and ‘hippocampus only’ [37]. 167

Cognitive data 168

Each subject who participated in ADNI underwent 169

comprehensive neuropsychological testing to evalu- 170

ate the cognitive state at each visit. Since other tests 171

like the Mini-Mental State Examination (MMSE) 172

and the Clinical Dementia Rating (CDR) are also 173

used to assess dementia in general, only the ADAS- 174

cog 11 [31] score is used in this study. It consists 175

of eleven subscales, testing different cognitive func- 176

tions to evaluate the severity of cognitive dysfunction 177

of persons with AD on a fine-grained level. The 178

total ADAS-cog score sums up to 70 points and 179

is composed of the errors a subject made, where 180

a worse cognition is represented by a higher score 181

[41]. The original ADAS-cog is suitable for assess- 182

ing AD severity, whereas it is not ideal for measuring 183

pre-dementia states [42]. 184

Neurophysiological data 185

To round off the description of the disease pro- 186

gression assessed with this study, we selected some 187

neurophysiological markers from CSF and PET. The 188

most promising markers for diagnosing Alzheimer’s 189

disease from CSF are levels of amyloid-� (A�), tau, 190

and phosphorylated tau (p-tau) [32, 43]. The PET 191

protocols for the ADNI cohorts changed over time 192

but [18F]fluorodeoxyglucose (FDG-PET) has been 193

used for all cohorts and [18F]florbetapir (AV45-PET) 194

has been introduced with ADNI2/ADNI-GO [44] as 195

amyloid imaging agent. Both PET protocols provide 196

promising biomarkers for AD diagnosis [33]. PET 197

data has been processed by the ADNI PET QC team 198

and one marker for FDG-PET has been extracted 199

from the average PET signal of angular, temporal, and 200

posterior cingulate as well as one marker for AV45- 201

PET as the average AV45 signal from frontal, anterior 202

cingulater, precuneus, and parietal cortex relative to 203

the cerebellum [44]. 204

Selection of the study cohort 205

For this study, subjects were selected based on 206

the availability of at least one sagittal T1-weighted 207

MP-RAGE scan processed with FreeSurfer and 208

ADAS-cog 11 subscores for at least three visits, 209

https://adni.loni.usc.edu
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Table 1
Sequences of included patients (N = 1,017, total number of data points / visits = 4,383)

Sequence Length 3 4 5 6 7 8 9 10 11

Number of Subjects 494 172 168 51 46 40 36 9 1
Percentage [%] 48.6 16.9 16.5 5.0 4.5 3.9 3.5 0.9 0.1

Sequence length is defined as the number of visits for consecutive years for which anatomical and cognitive data
is available.

Table 2
Subject characteristics of included patients (N = 1017). Values are represented as mean ± SD or count. Ranges are depicted as [minimum,

maximum], percentage in %

Characteristics Value Range/Percentage

Age at baseline 73.7 ± 6.9 [55.0, 90.3]
Years of education 16.0 ± 2.8 [6.0, 20.0]
Men / Women 574 / 443 56.4 / 43.6
Diagnosis at baseline: AD / MCI / HC 121 / 572 / 324 11.9 / 56.2 / 31.9
Number of ApoE-E4 alleles: 0 / 1 / 2 556 / 362 / 99 54.7 / 35.6 / 9.7
Ethnicity: White / African American / Asian / more than one ethnicity / other 956 / 34 / 18 / 7 / 2 94.0 / 3.3 / 1.8 / 0.7 / 0.2
Marital status: married / divorced / widowed / never married / missing 789 / 112 / 87 / 25 / 4 77.6 / 11.0 / 8.5 / 2.5 / 0.4
Protocol at baseline: ADNI-1 / ADNI-GO / ADNI-2 575 / 346 / 96 56.5 / 34.0 / 9.5

AD, Alzheimer’s disease; MCI, mild cognitive impairment; HC, healthy control.

including the baseline visit. One year was chosen as210

the interval between visits. The scans had to have211

an overall quality rank of ‘partial’ or ‘pass’. If more212

than one scan was available for a data point, i.e., one213

visit of a subject, only the scan with the best quality214

rank was chosen. If those scans were of equivalent215

quality, the scan closer to the one-year interval was216

chosen. After excluding data points at the beginning217

and the end of a sequence of visits, because of low-218

quality images or missing values in the ADAS score,219

subjects with less than three visits were excluded as220

well.221

Following these criteria, 1,017 subjects from three222

to a maximum of eleven visits were included in this223

study (Table 1). Altogether, 4,383 data points con-224

taining high-quality processed images and complete225

ADAS-cog scores were included in the study.226

Subjects were not chosen based on their genetic227

disposition, diagnosis, or progression; therefore,228

HCs, as well as MCIs and ADs, are included. Subjects229

were defined as AD patients if they had an MMSE230

score of 20 to 26 inclusive, a CDR score of 0.5 or231

1, and met the NINCDS-ADRDA criteria for proba-232

ble AD [36, 45]. Subjects with an MMSE score of233

24 to 30 inclusive, a CDR of 0.5, and a memory234

complaint measured by education-adjusted scores on235

the Wechsler Memory Scale Logical Memory II, but236

no other signs of cognitive impairment or demen-237

tia were diagnosed as MCI. If a participant had an238

MMSE score of 24 to 30 inclusively, a CDR of 0, and239

no signs of depression, MCI, or dementia, they were240

defined as HC [36]. A detailed description of subject 241

characteristics can be found in Table 2. 242

Feature engineering 243

To mitigate the curse of dimensionality [46], 244

volume features from subcortical areas (amygdala 245

(AM), Hip), and thickness features of cortical regions 246

(parahippocampus (PHip), EC, precuneus (PreC), 247

inferior temporal cortex (IT), middle temporal cor- 248

tex (MT)) were selected based on recent studies on 249

discrimination between HC, MCI, and AD (Table 3). 250

The subcortical and cortical measures were not sep- 251

arated since both combined achieved better results 252

[47]. Features were selected from both hemispheres 253

for symmetrical reasons, even if only one side is 254

considered relevant. These procedures led to 14 255

anatomical features that were used for the model- 256

ing (7 brain regions × 2 hemispheres). Volume values 257

were normalized to the intracranial volume estimated 258

by FreeSurfer to correct for subjects’ varying head 259

sizes and surface values normalized to the whole 260

brain surface. All values were min-max-scaled to a 261

range of zero to one. Missing values within subjects’ 262

sequences of visits were interpolated linearly. 263

Hidden Markov Models 264

An HMM was used to model the progression of AD 265

as a Markov chain from an observed output sequence 266

of measurements at each visit, i.e., the anatomical 267
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Table 3
List of anatomical regions considered most discriminant between HC, MCI, and AD. Function indicates their commonly assumed functions

[48]

Brain region Function Reason for inclusion Literature

Amygdala (AM) Emotional assessment Discrimination between HC and AD [49–53]
Hippocampus (Hip) Memory, navigation Discrimination between HC, MCI and

AD, atrophy in early stages of AD, used
in prediction of MCI conversion

[49–60]

Parahippocampus (PHip) Memory, recognition Atrophy in AD [49, 50, 52]
Entorhinal cortex (EC) Memory, navigation discrimination between HC, MCI and

AD, atrophy in early stages of AD, used
in prediction of MCI conversion

[51, 53, 54, 56, 58]

Precuneus (PreC) Memory, visuospatial
processing

Discrimination between HC and MCI,
used for MCI classification

[61, 62]

Inferior temporal cortex (IT) Visual representation Discrimination between MCI and AD [49, 52, 54]
Middle temporal cortex (MT) Recognition, accessing

word meaning
Discrimination between MCI and AD [49, 52, 54]

AD, Alzheimer’s disease, MCI, mild cognitive impairment; HC, healthy control.

features, with the underlying disease states as hid-268

den states. These hidden states are characterized by269

one distribution, each with different parameter val-270

ues [63]. Since the data features in this study are271

continuous, a Gaussian HMM was trained with the272

scikit-learn package hmmlearn [64].273

Model parameters274

A given number of states connected by transi-275

tion probabilities characterize an HMM. Since these276

states are hidden, they can only be observed through277

sequences of observations emitted with a certain278

emission probability [65]. Furthermore, each HMM279

is characterized by an initial state distribution, which280

determines the probability of starting in a particu-281

lar state. The emission probability is only used to282

train the model, whereas the transition probabilities283

are analyzed subsequently. The initial probability was284

computed but not investigated further since the sam-285

ple is not representative of the overall population.286

Instead, one part of the study cohort was explicitly287

recruited because they were already diagnosed with288

AD.289

The Baum-Welch algorithm [66], the state-of-290

the-art expectation-maximization algorithm to train291

HMMs, was used to solve the training problem.292

No constraints regarding the number of states were293

imposed, and parameters were assigned random ini-294

tial values to ensure that the model learns only from295

given data, not assumptions. A convergence thresh-296

old of 0.01 was used for all generated HMMs to end297

the training iterations.298

The decoding of the HMM, i.e., the translation299

from observation sequences to state sequences, was300

conducted with the Viterbi-Algorithm [67]. It was301

used because of its efficiency over comparing the 302

likelihood of possible hidden state sequences. 303

Model selection 304

To avoid overfitting, i.e., generating a model with 305

no more states than true states exist [68], it is not 306

advisable to choose the number of hidden states 307

solely based on the computed loglikelihood. Since 308

no assumptions were made in advance regarding the 309

number of hidden states, multiple HMMs were gen- 310

erated with numbers of states ranging from two to 311

fifteen. To select the most suitable model, a stabil- 312

ity approach from cluster analysis was adapted [69]. 313

This is a novel approach for HMMs but well suited 314

for the problem since stable, homogenous clusters of 315

the data points should define the states of the disease. 316

The selected stability measure is based on distances 317

between cluster patterns. This means that a model is 318

generated with the same data set but various random 319

initial seeds so that different patterns of clusters can 320

emerge and be compared to each other. In this study, 321

models with ten random initial seeds were generated. 322

It is assumed that the more stable the clustering solu- 323

tion, the closer it is to the true number of underlying 324

clusters. This measure was chosen since the loglike- 325

lihood of the models was too large to use common 326

selection methods like cross-validation, regulariza- 327

tion, and Bayesian integration [70]. The data set used 328

for training was decoded, so that each observation 329

is assigned a discrete hidden state. Afterwards, the 330

adjusted rand score [71] from scikit learn, a mea- 331

sure for the similarity between two cluster patterns, 332

was selected to compare designated states. Next, the 333

median and interquartile range (IQR) of the adjusted 334

rand scores for each number of states was calculated, 335
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Fig. 1. Adjusted rand scores for the models with an increasing
number of states. Data points outside of the 1st / 3rd quartile ± 1.5
* IQR are depicted as outliers.

and the model with the highest stable number of hid-336

den states was selected. Since even in models with a337

stable state number not all states are completely sim-338

ilar, the final model was selected by majority vote of339

the models. Finally, the states of the chosen models340

were ranked by descending mean normalized thick-341

ness and volume values and renumbered accordingly.342

Model description343

The transitions between states of the model were344

characterized via the p-values of Welch’s t-test [72]345

between data points that changed states and data346

points that stayed in the same state because of the347

unequal sample sizes (cutoff value <0.05, Bonfer-348

roni corrected). The comparisons between states were349

conducted via Student’s t-tests on a significance level350

of p < 0.001 (uncorrected).351

RESULTS352

Model selection353

The models with up to eight states converge to354

the same states independently of their initial seeds355

(Fig. 1); Hence, we chose eight states as most suitable356

for the data. Models with more than eight states lead357

to unstable state generation, i.e., overfitted models358

stuck in local optima.359

Model overview360

The optimal model forms two parallel routes cross-361

ing once at a very early point and merging at the final362

state (Fig. 2). States 0 and 2 can be defined as the ini- 363

tial states of two routes characterized by continuously 364

decreasing grey matter. The route starting at state 2 365

(Fig. 2, top) is characterized by an early decrease 366

mainly in the limbic regions (AM, Hip, PHip, EC). 367

We coin this one the limbic route. Because the route 368

starting with state 0 (Fig. 2, bottom) is characterized 369

by early and sustained atrophy mainly in the non- 370

limbic cortical regions (PreC as well as IT and MT), 371

we call this one the cortical route. There is one early 372

crossing from the limbic to the cortical route when 373

only considering transition probabilities >5%. How- 374

ever, when the cutoff probability is lowered to >1%, 375

we also find three crossings from the cortical to the 376

limbic route (Supplementary Figure 1). 377

State 2 (n = 792) is the initial state of the limbic 378

route. Its subjects, who experience mainly decrease 379

in the non-limbic regions, cross over to the corti- 380

cal route via state 3, while those who experience 381

mainly decrease in limbic regions progress to state 4 382

(n = 532). Grey matter of subjects switching to state 383

6 (n = 423) from state 4 decreases significantly in all 384

regions but the left PHip. The subjects finally transi- 385

tioning from state 6 to state 7 are mainly characterized 386

by decreasing CT in the non-limbic regions. 387

State 0 (n = 648) is the initial state of the corti- 388

cal route. Subjects who switch to state 1 (n = 600) 389

from here are mainly characterized by decreasing 390

cortical thickness in the non-limbic regions. Subjects 391

switching to state 3 (n = 643) from state 1 experi- 392

ence increasing brain atrophy in all regions but most 393

prominently in the lateral temporal areas and the EC. 394

Grey matter of subjects switching to state 5 (n = 648) 395

from state 3 decreases significantly in all regions. 396

Subjects transitioning to the final stage 7 (n = 277) 397

from stage 5 experience increasing brain atrophy in 398

all regions but most prominently in the non-limbic 399

regions and the EC. 400

Even though the overall structural integrity of the 401

grey matter in state 0 is higher than in all other states, 402

more than half of its subjects were already diagnosed 403

with MCI and even 2% with AD. In contrast, even 404

though the overall structural integrity of grey matter 405

in state 7 is worse than in all other states, we still 406

find 16% of the subjects only diagnosed with MCI 407

and even 2% as healthy. Even though there is a ten- 408

dency for more healthy controls in the early states and 409

more AD subjects in the later states, we did not find 410

clear segregation of diagnoses by our states (Fig. 3). 411

Furthermore, we find significantly differentiable dis- 412

tributions of diagnoses between the limbic and the 413

cortical routes (χ2
2 = 85.689; p < 0.001). More specif- 414
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Fig. 2. Visualization of the model with the corresponding state number in the middle circle of each state. The radius of each state corresponds to
the number of data points. Pie charts depict the ratio of HC (light grey), MCI (dark grey), and AD (black) diagnoses. Arrows depict transitions
with corresponding transition probabilities (cutoff: 5%) and indicate feature changes between stages (for t-values, see Supplementary Table
1). SV, subcortical volume; CT, cortical thickness; AM, amygdala; Hip, hippocampus; PHip, parahippocampus; EC, entorhinal cortex; PreC,
precuneus; IT, inferior temporal cortex; MT, middle temporal cortex.

Fig. 3. Probability of assigning a subject with a given diagnosis to
one of the eight stages of the model.

ically, the proportion of diagnoses HC (χ2
1 = 48.653;415

p < 0.001) and MCI (χ2
1 = 6.680; p = 0.010) is signif-416

icantly higher in the cortical route and the diagnosis417

AD (χ2
1 = 0.357; p < 0.001) is significantly higher in418

the limbic route.419

Along this line, carriers of two APOE E4 alleles are420

sign. overrepresented in the limbic route compared421

to the cortical route (53/25 subjects; χ2
1 = 9.222;422

p < 0.001). In contrast, carriers of no (232/247 sub-423

jects; χ2
1 = 1.035; p = 0.671) or one (150/150 subjects)424

APOE E4 allele are more evenly distributed among425

the two routes.426

Development of grey matter atrophy 427

To further characterize the routes that lead to the 428

final state with a high probability of an AD diagnosis, 429

we compared the “corresponding” states of the two 430

routes with each other (Fig. 4). The two routes can 431

easily be differentiated by all seven brain regions, 432

but we find a clear distinction between limbic and 433

non-limbic regions. The limbic regions of subjects 434

traversing the limbic route are significantly smaller or 435

thinner, respectively than those of subjects following 436

the cortical route (Fig. 4A-D) and vice versa for the 437

non-limbic regions (Fig. 4E–G). 438

Development of cognition 439

Overall cognitive impairment is significantly 440

higher in the limbic route than in the cortical route 441

(total ADAS-cog score; t3371 = 7.678; p < 0.001). 442

Cognitive differences between the subjects travers- 443

ing the two routes are most noticeable in the memory 444

domain, with subjects from the limbic route experi- 445

encing stronger memory impairments (Fig. 5). We 446

find significant differences for at least two com- 447

parisons for the ADAS subscores of word recall 448

(Q1), orientation (Q7), and word recognition (Q8). 449

A similar albeit weaker differentiation presents itself 450

for the remaining memory subscore recall instruc- 451

tions (Q9) with a difference between states 3 and 4 452

(t1173 = 2.806; p = 0.005). Three language subscores 453

show a similar differentiation between states 3 and 4: 454
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Fig. 4. Development of grey matter atrophy for all brain regions. The top row (A–D) shows the regions of the limbic system. The bottom
row (E–G) shows the remaining cortical regions. The transition from state 2 to 3 is omitted for clarity. Error bars depict symmetrical standard
deviations but are only depicted for one side for clarity. Two-sided t-tests between states 1/2, 3/4, 5/6: ∗∗∗∗p < 0.001 for both hemispheres,
∗∗∗p < 0.001 for the left hemisphere, ∗∗p < 0.01 for the right hemisphere, ∗p < 0.05 for the right hemisphere.

Fig. 5. Development of the three ADAS-cog subscores that differ most between the two routes of the model. The transition from state 2 to
3 is omitted for clarity. Error bars depict symmetrical standard deviations but are only depicted for one side for clarity. Two-sided t-tests
between states 1/2, 3/4, 5/6: ∗∗∗p < 0.001.

naming (Q5; t1173 = 4.010; p < 0.001), word finding455

(Q11; t1173 = 5.123; p < 0.001), and comprehension456

(Q12; t1173 = 2.067; p = 0.039). Finally, we find a457

stronger cognitive decline in the praxis domain for458

the subjects on the limbic route for ideational praxis459

(Q6) for the comparison between states 3 and 4460

(t1173 = 2.682; p = 0.007) as well as states 5 and 6461

(t889 = 2.372; p = 0.018).462

Two subscores show the opposite pattern with463

stronger impairment of subjects traversing the cor-464

tical route. We find a differentiation between states465

5 and 6 for commands (Q2; t889 = 3.884; p < 0.001)466

in the language domain and construction (Q3;467

t889 = 2.315; p = 0.021) from the praxis domain. The468

subscores for spoken language (Q10) do not differ-469

entiate between the two routes at all. 470

Development of neurophysiological markers 471

CSF and PET markers were not obtained for all 472

subjects and time points. Therefore, our analysis of 473

the neurophysiological markers is based on only one 474

third of the data points (30.34% / 35.95% / 35.95 % / 475

46.41% / 27.09% for abeta / tau / p-tau / FDG / AV45). 476

A� levels are significantly lower in the first two states 477

of the limbic route than in the corresponding states 478

of the cortical route (Fig. 6A). For both tau levels we 479

do not find significant differences between the two 480

routes. Analogue to A� levels, we find significant 481

reduction in FDG uptake for the first two states of the 482
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Fig. 6. Development of the neurophysiological markers that differ between the two routes of the model: abeta (A), FDG-PET (C), and
AV45-PET (C). The transition from state 2 to 3 is omitted for clarity. Error bars depict symmetrical standard deviations but are only depicted
for one side for clarity. Two-sided t-tests between states 1/2, 3/4, 5/6: ∗∗∗p < 0.001, ∗p < <0.05 (n.s.).

limbic route compared to the cortical route (Fig. 6B).483

Finally, amyloid concentration in the brain assessed484

with AV45-PET starts with a similar disadvantage of485

the subjects in the limbic route but the differences486

between routes later become inconclusive (Fig. 6C).487

DISCUSSION488

Modeling the progressive spread of grey matter489

atrophy with 1,017 subjects of the ADNI cohort490

leads to eight states with differentiable neuroanatom-491

ical features. This unconstrained modeling approach492

revealed more than the three disease stages that are493

usually included in a diagnosis-based progression of494

AD: healthy, mild cognitive impairment, and finally,495

AD. Even though there is a higher proportion of496

diagnosed AD patients in the later states, we find497

subjects with all diagnoses in each state. Further-498

more, we do not find a single consistent spreading499

pattern but can differentiate disease courses based on500

a set of neuroanatomical markers with two parallel501

routes crossing once at an early point and merging at502

the final state. On both routes, grey matter atrophy503

is constantly increasing. The limbic route is char-504

acterized by early grey matter decrease mainly in505

the limbic regions (hippocampus, amygdala, parahip-506

pocampus, entorhinal cortex). In contrast, the cortical507

route is characterized by early and sustained atrophy508

mainly in the non-limbic cortical regions (precuneus509

as well as inferior and middle temporal cortex). All510

anatomical regions included discriminate the two511

routes very well throughout the progression. The lim-512

bic regions of subjects traversing the limbic route are513

significantly smaller or thinner than those of subjects514

traversing the cortical route and vice versa for the515

non-limbic regions. Overall, cognitive performance516

is worse in the subjects on the limbic route than in517

the ones on the cortical route, but the detailed pat-518

tern of cognitive sub-functions mirrors the specific 519

regional atrophy underlying the two routes. 520

The limbic route of our model matches the domi- 521

nant view of AD progression with early atrophy in 522

the hippocampus and entorhinal cortex, spreading 523

through the medial temporal lobe and finally to other 524

cortical regions [6, 7, 9, 51, 54]. Accompanying early 525

decrease in CSF A� levels [73], glucose metabolism 526

[74], and to a smaller degree early increase in PET A� 527

concentration [73] complete the picture of the ‘typ- 528

ical’ AD progression. A specific cognitive decline 529

accompanies the differential development of grey 530

matter atrophy. The subjects traversing the limbic 531

route are significantly more impaired in various mem- 532

ory tasks. This is consistent with the prominent 533

role of the hippocampus [6], parahippocampus [75], 534

and entorhinal cortex [76] in memory. As the core 535

structure of emotion processing, the amygdala com- 536

plements the memory-processing regions by storing 537

emotional experiences [77]. The higher impairment 538

in the memory domain might also explain the sig- 539

nificantly higher proportion of AD diagnoses in the 540

limbic route since diagnostics is mainly driven by 541

memory function. The significantly higher propor- 542

tion of carriers of two APOE E4 alleles in this route 543

is consistent with the prominent role APOE E4 as 544

major risk factor for AD [78]. 545

In contrast, the cortical route is characterized by 546

early atrophy in cortical regions. Grey matter decline 547

in those regions is usually assumed to start later than 548

the decline in limbic regions [9]. However, two routes 549

with differentiable involvement of hippocampus atro- 550

phy have been proposed before [13, 28]. Overall, 551

the cognitive performance of subjects in the corti- 552

cal route is better, except for the ADAS-cog tasks 553

command and construction. This specific cognitive 554

decline fits the brain regions affected in the cortical 555

route. The precuneus and the inferior temporal cor- 556
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tex are involved in visuospatial processing and visual557

representation, respectively [79, 80], which are nec-558

essary skills for the construction task. The middle559

temporal cortex is a likely candidate for the impair-560

ment in the commands task due to its involvement in561

accessing word meaning [81].562

Our findings support the heterogeneity of AD563

progression suggested before [13, 28]. Goyal et564

al. [13] trained an HMM on clinical, biochemical,565

demographic, and neuroimaging biomarkers. This566

approach also resulted in two routes of progression567

that differed in hippocampal volume as well as CSF568

and PET A�. Interestingly, the differences in the569

amyloid markers between groups relative to the dif-570

ference in hippocampal volume were switched for571

our model. However, Goyal et al. [13] included those572

markers in the model while they serve only as addi-573

tional descriptors for our subtypes. Other structural574

anatomical markers than the hippocampal volume,575

however, were not included in their model; hence we576

add with our results the tracking of the spatial pro-577

gression of the disease. On the other hand, Young et578

al. [28] performed their analysis on similar structural579

anatomical markers as our study but used a different580

modeling approach. They discerned three subtypes581

of AD patients with differential spread of grey matter582

atrophy with their typical subtype showing parallels583

to our limbic route and their cortical subtype show-584

ing parallels to our cortical route. The third subtype585

cannot be mapped with our model since we chose586

only seven anatomical key regions as features. In587

addition to the two previously mentioned studies,588

we investigated the detailed cognitive performance of589

the subjects. Even though this data was specifically590

excluded from our modeling process, the adequate591

cognitive performance of subjects traversing the two592

routes of our model suggests behavioral relevance593

of the two routes of brain atrophy. Taken together,594

our work strengthens the hypothesis of differential595

AD progression based on physiological changes and596

complements the few existing studies on this topic.597

All three studies based on longitudinal physiologi-598

cal data from the ADNI dataset [13, 28], and or own,599

find clear intermediate disease stages that are not cap-600

tured by the current diagnostic procedure, nor do they601

identify the different types of progression that these602

studies distinguish. Furthermore, finding subjects of603

all three diagnoses in all states of our model and the604

models of the previous studies suggests that more605

detailed diagnostic categories might be preferable to606

avoid rather heterogeneous physiological and behav-607

ioral populations described by the same diagnostic608

category. However, a long way of research is still 609

ahead to clearly separate the subtypes, to diagnose, 610

and to treat them adequately. In the early states of our 611

model, we find mainly subjects without AD diagno- 612

sis, but the states already provide prognostic capacity. 613

This means that based on the structural integrity of 614

only seven key regions in the brain, we can provide the 615

probability of a person proceeding to AD via the lim- 616

bic or the cortical route. Our findings add to previous 617

research [13, 28] that AD can be detected earlier than 618

it is in current clinical practice. Therefore, to identify 619

AD patients early, a more comprehensive assessment 620

needs to be performed, even with or rather especially 621

with patients having atypical symptoms that are not 622

driven by memory loss. 623

The model proposed in this study is based on 624

seven subregions of highly preprocessed anatomical 625

brain data only. To provide a more complete pic- 626

ture of AD progression, it is necessary to consider 627

more brain regions and other physiological markers 628

as well. Adding more brain regions might further dif- 629

ferentiate the two routes as demonstrated by Young 630

and colleagues [28] and may add further stages as 631

well. However, it lies in the nature of clinical data 632

sets that the sample size is limited, constraining the 633

number of markers that can be investigated. There- 634

fore, more studies with various physiological markers 635

are needed to finally obtain the bigger picture by 636

combining their results. However, in order to resolve 637

seemingly contradictory findings like the role of the 638

amyloid markers in the two routes, studies carefully 639

combining them should also be undertaken. Addition- 640

ally, more findings based on other subjects than the 641

ADNI cohort would be desirable. This dataset is of 642

invaluable importance for AD research, but indepen- 643

dent confirmation of results based on other datasets 644

would be important to generalize the findings. It is 645

desirable to have robust, objective and easily obtain- 646

able markers for diagnosis and prognosis. MRI has 647

the advantage of being non-invasive but is still rather 648

expensive. The processing of the image to obtain the 649

markers used in this study is cumbersome and rather 650

not suited for clinical routine (yet). 651

In summary, we find eight stages of brain atrophy 652

that can lead to AD via two separate routes. Discern- 653

ing subtypes of AD based on physiological markers of 654

disease progression is still in the stage of exploratory 655

research. The specific cognitive impairments exhib- 656

ited by the subjects traversing the two routes suggest 657

a behavioral relevance of the subtyping based on neu- 658

roanatomical markers.
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